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Abstract

. Marco Mochi3

The problem of finding a Master Surgical Schedule (MSS) consists of scheduling different specialties to the operating rooms
of a hospital clinic. To produce a proper MSS, each specialty must be assigned to some operating room. The number of
assignments is different for each specialty and can vary during the considered planning horizon. Realizing a satisfying
schedule is of upmost importance for a hospital clinic: recently, a compact solution based on the logic-based methodology
of Answer Set Programming (ASP) to the MSS problem has been introduced and tested on synthetic data, with satisfying
results. However, even more important is to be able to (i) reschedule efficiently in case a computed schedule cannot be fully
implemented due to unavailability, and (i7) test the obtained solution on real data. In this paper, we design and implement a
rescheduling solution based on ASP, and test both our scheduling and rescheduling solutions on real data from ASL1 Liguria
in Italy. The experiments show that our ASP solutions provide satisfying results, also when tested on real data.

Keywords Healthcare - Scheduling - Answer set programming

1 Introduction

Digital Health, defined as the usage of information and com-
munication technologies in medicine and in the management
processes of healthcare, arose several years ago, but has
gained increasing importance in recent years, thanks to new
technologies and also due to new challenges such as an aging
society, the COVID-19 pandemic and the need to reduce high
costs. One of the major problems related to modern hospitals
are long waiting lists that reduce patients’ satisfaction and
the level of care offered to them. The Master Surgical Sched-
ule (MSS) consists of cycles of recurrent slots of surgery
types, each belonging to a specialty. Its recurrent and pre-
dictable nature makes the MSS well suitable to be scheduled
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weeks or even months in advance. An MSS can be optimized
according to various parameters, such as expected demand
for each specialty, resource conflicts, bed availability and so
on. The MSS specifies which specialty is assigned to each
operating room in a particular day and session. The admin-
istrative practices of surgical departments on this task can
have a large impact on hospital costs, patient outcomes and
on the overall efficiency of a hospital. Many papers have ana-
lyzed this problem (see for example [21, 22, 31, 36, 39]);
in particular, the introduction of an effective MSS led to
efficiency gains at the operating room department: at Beat-
rix hospital, the annual budget for operating room hours is
reduced from 12,848 h t0 9,972 h (22.4% reduction) while the
patients operated increased by 7.7% in 2007 respect to 2006,
using the same capacity as at the same time surgery dura-
tion decreases by 9.0% [37]. The MSS is often considered
as an already available input in many healthcare problem
solutions but, due to the different aspects that need to be
taken into account for computing a valid schedule and the
presence of a number of works at the state of the art deal-
ing uniquely with it, the MSS is an interesting combinatorial
problem that deserves its own interest. Going in some more
details, the MSS problem is the task of assigning the spe-
cialties to the available operating rooms in the different days
and sessions, taking into account that not all the special-
ties need to be assigned the same amount of time and that,

@ Springer


http://crossmark.crossref.org/dialog/?doi=10.1007/s13748-024-00342-z&domain=pdf
http://orcid.org/0000-0003-3920-8186

Progress in Artificial Intelligence

during the considered days, the amount of time each spe-
cialty should be assigned can vary. The aim of the MSS is
to support the hospital to organize the resources and plan the
different specialties in the next weeks/months. In particular,
by developing a MSS early a hospital can properly manage
the personnel and the resources, thus leading to a reduction
of the costs. Moreover, by helping the hospital to manage
the surgeries and reducing the surgery waiting list, a proper
solution to the MSS problem is vital to improve the degree
of patients’ satisfaction. Complex combinatorial problems,
possibly involving optimizations, such as the MSS problem,
are usually the target applications of logic-based knowledge
representation and reasoning languages such as Answer Set
Programming (ASP). Indeed ASP, thanks to its readability
and the availability of efficient solvers, e.g., CLINGO [25],
has been successfully employed for solving hard combinato-
rial problems in several research areas, and it has been also
employed to solve many scheduling problems [1, 4, 10, 11,
14, 32], also in industrial contexts (see, e.g., [18, 20, 35] for
detailed descriptions of ASP applications).

In this paper,! we first present an informal description and
a precise mathematical formulation of the MSS problem. We
then apply ASP to solve the MSS problem, by presenting a
compact ASP encoding obtained by modularly representing
input specifications in ASP, and then running an experimental
analysis on randomly generated MSS benchmarks, to pre-
liminary check the viability of our approach. Further, the
scheduling solution is adapted to the real data from ASLI
Liguria in Italy.

However, it may be the case that a previously computed
schedule can not be effectively implemented due to a sud-
den unavailability of ORs on some days, or to limitations
or changes related to specialties. In this case, there is the
need to reschedule the solution, minimizing the changes to
the remaining part of the schedule. Thus, we have designed
and implemented a rescheduling solution based on ASP for
dealing with these issues, based on a mathematical formula-
tion of the rescheduling we have defined. Finally, we have
tested both our scheduling and rescheduling solutions on the
real data from ASL1 Liguria in Italy: results using the state-
of-the-art ASP solver CLINGO show that ASP is a suitable
solving methodology for both tasks, also when dealing with
real data and in comparison to alternative logic-based for-
malisms, like Integer Linear Programming using GUROBI.

This paper is arevised and extended version of [23], whose
main additions correspond to the parts of the paper that deal
with rescheduling, i.e., Sects. 5 and 6.2. Moreover, the back-
ground (Sect.3) has been expanded, and the related work
(Sect. 7) has been extended with some considerations about

! This is an extended and revised version of a paper appearing in the
CEUR proceedings of the AIXIA 2023 Workshop on Artificial Intelli-
gence for Healthcare [23].
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rescheduling. Further, it is structured as follows. Sections 2
begins with an informal description of the MSS problem,
followed by its formal mathematical representation. Then,
Sect.3 provides background information on ASP syntax,
semantics, and programming methodology. Section4 shows
our ASP encoding along with the results of the experimental
evaluation. Section5 delves into the rescheduling aspect of
the MSS problem, presenting firstly the informal definition
of the problem, then its mathematical formulation, and lastly
the related encoding. Section 6 adapts and tests the solutions
on real data. The paper ends by discussing related work and
conclusions in Sect.7 and 8, respectively.

2 Master surgical scheduling

In this section, we focus on the Master Surgical Scheduling
(MSS) problem. Firstly, we provide an informal description
of the problem and, then, its mathematical formulation.

2.1 MSS problem definition

With the computation of a MSS, a hospital can see on
which days, sessions, and operating rooms (ORs) each spe-
cialty will do the surgeries. This is important since by looking
at the MSS the hospital can manage personnel and resources
in advance. To schedule the MSS a hospital should evaluate
the percentage of time that needs to be assigned to each spe-
cialty. This percentage should fall within a tolerated range
to allow for some flexibility in the scheduling and to better
respond to the patients’ needs. The percentage of assignments
is evaluated as the number of times each specialty is assigned
a session divided by the total number of sessions available
in the period considered. To produce a proper schedule, the
solution must assign the specialties taking into account the
percentage targets and the allowed errors of each specialty. At
most n sessions are associated with each day, where n is equal
to the maximum number of sessions that could be assigned
to an OR. Each session is identified by an id. For example,
in a hospital with the maximum number of daily sessions
equal to 2, day 1 will be linked to sessions 1 and 2, while
day 2 will be linked to sessions 3 and 4, and so on for all the
remaining days. Each session is then linked to the ORs and
the scheduler must assign a specialty to each session. Hospi-
tals could desire that the target assignment of each specialty
vary, e.g., on a monthly or weekly basis. Another aspect that
could change during the considered period and between the
ORs is the sessions. Typically, each OR is allocated for two
sessions, morning and afternoon, each day. However, some
ORs may be allocated into a different number of sessions,
either more or fewer, or even utilized for just one session.
In particular, the single-session solution could be employed
when a specialty requires specific resources and the time to
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prepare them is long enough that changing the specialty at
mid-day would be a waste of time. Moreover, some ORs
could be unavailable on some days and a proper solution
must be able to consider these unavailability.

Overall, the MSS problem takes as input the number of
ORs and specialties, the number of days to consider for the
scheduling, the number of sessions for each day, and the
different target values for each specialty, and computes the
assignment of the different specialties to the available ORs
of a hospital in the considered planning horizon. An optimal
solution minimizes the difference between the percentage of
usage of each specialty and the target value of each period.
An example of MSS is presented in Table 1. In particu-
lar, the table is the result obtained by our solution, which
we will show later in the paper, considering 90 days and a
fixed target value for each month. Moreover, we considered
a hospital with 10 ORs, organized in 2 sessions for each day,
and 5 specialties (these numbers correspond to hospitals of
small-medium size in Italy) SP1 ... SP5: the table shows
the MSS for the first 7 days of the solution. In particular,
each row represents a day and the sessions linked to that day,
the columns report the ORs and the intersection shows the
specialty assigned to the OR in that day and session.

2.2 MSS mathematical formulation

Fix the sets D of days, OR of operating rooms, and SP of spe-
cialties. Let n be the maximum number of sessions assignable
to an operating room in a single day. Consequently, the total
number of sessions to be allocated to each operating room
during the specified period is given by m = n - |D|. Let
S = {s1,...,sn} be the set comprising the sessions to be
assigned. As previously explained, we may examine shorter
intervals rather than the entire duration of | D| days. To this

aim, we partition the set D into smaller subsets é in such a
way that the elements within each subset follow a consecu-
tive order, without any gaps or interruptions. Let A be the set
collecting these subsets. Moreover, let:

e 7:SPXOR — {0, 1} be the function suchthat t(x, y) =
1 if the specialty x can be assigned to the operating room
v, 0 otherwise;

e p, : ORXx D x S — {0, 1} be the function associ-
ating an operating room with the appropriate sessions
for the given day. Specifically, p,(v,d,s;) = 1ifi €
{n-d—n+1,...,n-d}, 0 otherwise;

e ¢ : SP x A — [0, 1] be the target function, indicating
the desired percentage goal to attain for the schedule of
a particular specialty within a specified range of days;

e w:SP x A — [0, 1] be the deviation function, defining
the admissible error for the schedule of a particular spe-
cialty within a specified range of days from the desired
value.

To exploit only suitable tuples, we consider the set
R=p,'(1)={(y.d.s) €ORx D x S| py(y.d.s) =1}

which collects the right assignments of sessions concerning
a given day for an operating room. Referring to the example
presented in Table 1 and considering only the operating room
1 on days 1 to 3, the set R encompasses the tuples (OR1,1,1),
(OR1,1,2),(0OR1,2,3), (OR1,2,4), (OR1,3,5), and (OR1,3,6).

Then, we define the notion of scheduling, which links
together an OR, a day, a session, and a specialty.

Definition 1 (Scheduling) A scheduling o is a function of
the form o : R — SP that associates to each OR, day, and
session, a specialty.

Table 1 Example of MSS

generated by our solution Day  Session ORI OR2 OR3 OR4 OR5 OR6 OR7 OR8 OR9 ORIO
1 1 SP5 SP5 SP3 SP3 SP2 SP5 SP4 SP3 SP1 SP4
2 SP5 SP5 SP3 SP3 SP2 SP5 SP4 SP3 SP1 SP4
2 3 SP5 SP5 SP3 SP3 SP2 SP5 SP4 SP3 SP1 SP4
4 SP5 SP5 SP3 SP3 Sp2 SP5 SP4 SP3 SP1 SP4
3 5 SP5 SP5 SP3 SP3 SP2 SP5 SP4 SP3 SP1 SP4
6 SP5 SP5 SP3 SP3 SP2 SP5 SP4 SP3 SP1 SP4
4 7 SP5 SP5 SP3 SP3 SP2 SP5 SP4 SP3 SP1 SP4
8 SP5 SP5 SP3 SP3 SP2 SP5 SP4 SP3 SP1 SP4
5 9 SP5 SP5 SP3 SP3 SP2 SP5 SP4 SP3 SP1 SP4
10 SP5 SP5 SP3 SP3 SP2 SP5 SP4 Sp2 SP1 SP4
6 11 SP5 SP5 SP3 SP3 SP2 SP5 SP4 Sp2 SP1 SP4
12 SP5 SP5 SP3 SP3 SP2 SP5 SP4 Sp2 SP1 SP4
7 13 SP5 SP5 SP3 SP3 SP2 SP5 SP4 Sp2 SP1 SP4
14 SP5 SP5 SP3 SP3 SP2 SP5 SP4 Sp2 SP1 SP4
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The set ¥ = {(y,d,s,x) € ORXx D x § xSP | x =
o(y,d,s) A t(x,y) = 1} collects all the tuples eligible as
scheduling.

Referring once more to the example presented in Table
1 and focusing exclusively on operating room 1 on days
1 to 3, the set ¥ comprises the tuples (ORI,1,1,SP5),

(OR1,1,2,SP5), (OR1,2,3,SP5), (OR1,2,4,SP5), (OR1,3,5,SP5),

and (OR1,3,6,SP5).

Finally, before formally defining the MSS problem, we
introduce the temporal distribution function of the form ¢ :
SP x A x ¥ — [0, 1], representing the percentage of time
that a specialty has been assigned within a given range of
days in a scheduling.

Definition 2 (MSS Problem) The MSS problem is defined as
the problem of finding a set ¥ of tuplest = (x, y,d,s) €
that satisfies the following conditions:

(c1) Vy€OR,Vd e D, Vs €8 |x (x,y,d,s) e ¥| =
1;

(c3) V6 € A, Vx € SP |x :
SA(y,d,s) e R|>1,

(c3) Vx € SP, Vs € A |e(x,8) —¢(x, 8, )| < w(x, §).

(x,y,d,s) € ¥y Nnd €

The specified conditions are necessary to enforce the fol-
lowing constraints: (c1) ensures that each operating room, in
each day and session, is assigned to exactly one specialty;
(c2) ensures that for each range § of days, each specialty
is assigned at least once to some operating room in §; (c3)
ensures that the difference between the target function and the
temporal distribution function remains within the specified
tolerance. Moreover, to assess different solutions concerning
the variance between the target function and the temporal dis-
tribution function, we introduce the following definition.

Definition 3 (Dominating Solution) Given a solution v for
the MSS problem, let

= >

xeSP,6eA

| G(X,S) - C(X,S, lﬁ) |

be the sum of the differences between the target function and
the temporal distribution function. A solution i dominates
a solution ¥ if 1, < 1.

Consequently, we define the notion of optimal solution.

Definition 4 (Optimal solution) A solution is optimal if it is
not dominated by any other solution.

3 Background

Answer Set Programming (ASP) [7] is a logic-based pro-
gramming paradigm developed in the field of non-monotonic
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reasoning. In this section, we first overview the language of
ASP, by presenting syntax and semantics. Then, we describe
the ASP programming methodology and outline the main dif-
ferences with respect to other logic-based formalisms. About
the language, more detailed descriptions and a more for-
mal account of ASP, including the features of the language
employed in this paper, can be found in [7, 9]. Hereafter, we
assume the reader is familiar with basic logic programming
conventions.

3.1 Syntax and semantics

Syntax. The syntax of ASP is similar to the one of Prolog.
Variables are strings starting with an uppercase letter, and
constants are non-negative integers or strings starting with
lowercase letters. A term is either a variable or a constant.
A standard atom is an expression p(tq,...,1,), where p
is a predicate of arity n and 11, ..., t, are terms. An atom
p(ty, ..., ty) is ground if ¢, ..., t, are constants. A ground
set is a set of pairs of the form (consts:conj), where consts
is alist of constants and conj is a conjunction of ground stan-
dard atoms. A symbolic set is a set specified syntactically as

{Termsy : Conjy; --- ; Terms; : Conj;}, where t > 0, and
for all i € [1,t], each Terms; is a list of terms such that
|Terms;| = k > 0, and each Conjj; is a conjunction of stan-

dard atoms. A set term is either a symbolic set or a ground set.
Intuitively, a set term {X :a(X, ¢), p(X); Y :b(Y, m)} stands
for the union of two sets: the first one contains the X-values
making the conjunction a(X, ¢), p(X) true, and the second
one contains the Y-values making the conjunction b(Y, m)
true. An aggregate function is of the form f(S), where § is
aset term, and f is an aggregate function symbol. Basically,
aggregate functions map multisets of constants to a constant.
The most common functions implemented in ASP systems
are the following:

e #count, number of terms;
e #sum, sum of integers.

Anaggregate atomis of the form f(S) < T, where f(S)isan
aggregate function, < € {<, <, >, >, #, =} is an operator,
and T is a term called guard. An aggregate atom f(S) < T
is ground if T is a constant and S is a ground set. An atom
is either a standard atom or an aggregate atom. A rule r has
the following form:

ayl ... lay, : —by,...,bg,not bgyy, ...,not by,.

where ay, ..., a, are standard atoms, by, ..., by are atoms,
bk+1, ..., by are standard atoms, and n,k,m > 0. A lit-
eral is either a standard atom a or its negation not a. The
disjunction ay | ... | a, is the head of r, while the con-

junction by, ..., by, not bg41, ..., not by, is its body. Rules
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with empty body are called facts. Rules with empty head are
called constraints.

A variable that appears uniquely in set terms of a rule r is
said to be local in r, otherwise, it is a global variable of r. An
ASP program is a set of safe rules, where a rule r is safe if the
following conditions hold: (i) for each global variable X of r
there is a positive standard atom £ in the body of » such that
X appears in £, and (ii) each local variable of r appearing in
a symbolic set {Terms: Conj} also appears in a positive atom
in Conj.

A weak constraint [8] w is of the form:

i~ by, ..., bg,not byyy, ..., not by,. [w@l].

where w and [ are the weight and level of w, respectively.
(Intuitively, [w @[] is read as "weight w at level [, where
the weight is the “cost” of violating the condition in the body
of w, whereas levels can be specified for defining a prior-
ity among preference criteria). An ASP program with weak
constraints is [T = (P, W), where P is a program and W is
a set of weak constraints.

A standard atom, a literal, a rule, a program or a weak
constraint is ground if no variables appear in it.

The following example illustrates a rule comprising a
#count aggregate, followed by a constraint and a weak con-
straint:

n_session (N, START,END) :- N = #count{SID,OR,DAY :
session(SID,OR,DAY), DAY >= START, DAY < END},
targetShare(_,_,_START,END) .

:— effectiveShare (SP, PERCENTAGE, START, END), PERCENTAGE
<= 0.

:~ effectiveShare (SP,ES, START, END) ,
targetShare (SP, TS, START, END) . [|ES—TS‘@1,SP,START]

Semantics. Let P be an ASP program. The Herbrand
universe Up and the Herbrand base Bp of P are defined
as usual. The ground instantiation G p of P is the set of all
the ground instances of rules of P that can be obtained by
substituting variables with constants from Up.

An interpretation I for P is a subset I of Bp. A ground
literal £ (resp., not £)istrue w.r.t. [ if € € I (resp.,¢ ¢ I),and
false (resp., true) otherwise. An aggregate atom is true w.r.t.
1 if the evaluation of its aggregate function (i.e., the result of
the application of f on the multiset S) w.r.t. [ satisfies the
guard; otherwise, it is false.

A ground rule r is satisfied by I if at least one atom in the
head is true w.r.t. I whenever all conjuncts of the body of »
are true w.r.t. [.

A model is an interpretation that satisfies all rules of a
program. Given a ground program G p and an interpretation
1, the reduct [19] of Gp w.rt. I is the subset G4 of Gp
obtained by deleting from Gp the rules in which a body
literal is false w.r.t. /. An interpretation / for P is an answer
set (or stable model) for P if I is a minimal model (under
subset inclusion) of G, (i.e., I is a minimal model for G%,)
[19].

Given a program with weak constraints [T = (P, W), the
semantics of IT extends from the basic case defined above.
Thus, let G = (G p, Gw) be the instantiation of IT; a con-
straint @ € Gw is violated by an interpretation / if all the
literals in w are true w.r.t. 1. An optimum answer set for I1 is
an answer set of G p that minimizes the sum of the weights
of the violated weak constraints in Gy in a prioritized way.

The meaning of the rules provided at the end of the previ-
ous paragraph about the ASP syntax will be provided in the
next section, which presents the ASP encoding for the MSS
problem.

Syntactic shortcuts. In the following, we also use choice
rules of the form {p}, where p is an atom. Choice rules can
be viewed as a syntactic shortcut for the rule p | p’, where p’
is a fresh new atom not appearing elsewhere in the program,
meaning that the atom p can be chosen as true.

An example of a choice rule is:

{mss (OR, SID, SP,DAY) : operatingRoom(OR, SP)} == 1 :-
session(SID,DAY,OR) .

3.2 Programming methodology

Fig.1 depicts a representation of a solution based on a
logic-based declarative programming approach, as our ASP
solution, consisting of five blocks as described above.

e Problem: this block represents the problem description
or formulation to be modeled and solved.

e Encoding: this block involves the formal representation
of the problem, using ASP in our case, based on the
informal description of the problem or the precise math-
ematical formulation provided.

e Solver: this block takes the encoding of the problem as
input and generates the answer sets.

e AnswerSet: this block represents the output of the solver
and corresponds to the set of atoms that satisfy all the
rules of the encoding, according to the semantics given
above.

e Solution: this block is the solution of the problem, in
which the answer sets are interpreted as solutions of the
input problem.

The presence of a clear programming methodology is,
arguably, one of the advantages that ASP offers with respect
to other logic-based paradigms. Others include: (i) The ASP
high-level specifications are declarative and often appreci-
ated even by non-experts since they found them readable,
differently from the specifications employed by the other
paradigms, e.g., SAT and CP. (ii) There are free and open
source systems (like the mentioned CLINGO, or WASP [2]),
whose performances are often comparable to the ones of
industrial tools for ILP like, e.g. CPLEX, or to GUROBI, or
SAT solvers (as shown in our experiments). (iii) ASP allows
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= N

Fig.1 Programming methodology schema

for easily expressing and reasoning on multi-objective and
multi-level optimizations, which is not the case for, e.g., opti-
mization variants of SAT such as Max-SAT (unless weights
having exponential gaps are applied).

On the other hand: (a) Being a declarative approach, there
is less control on the solving, which is delegated to an ASP
solver. (b) Some CP constraints, sush as alldifferent, that
may be useful in applications, are not part of the language,
and can not be expressed in a compact way; ILP allows for
expressing quadratic, non-linear, functions in the optimiza-
tion statement, which are not part of the ASP standard and
ASP solver can not solve (at least in a direct way).

4 ASP solution for the MSS problem

Starting from the specifications in the previous section, here
we present our compact and efficient ASP solution for the
MSS problem, and the results of an experimental analysis
performed on randomly generated benchmarks. The ASP
encoding is based on the input language of CLINGO [24].
Data model. The input data is specified by means of the
following atoms in relation to the mathematical formulation:

e instances of day (D) represent the set D of available
days;

e the constant max_session corresponds to the constant
n and represents the maximum number of sessions that
can be assigned to the ORs in a day;

e the constant s_count represents the maximum number
of sessions that can be assigned to each operating room
through all days. It is evaluated by multiplying the con-
stant max_session with the constant d_count, that
represents the number of days considered in the schedul-
ing and corresponds to the constant m;

e instancesof operatingRoom (OR, SP) represent which

specialty SP can be assigned to the operating room iden-
tified by an id OR and represents pairs for which the
function t assumes value 1;

e instances of specialty (SP) represent the different
specialties identified by their id SP and corresponds to
the set S;
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e instances of targetShare (SP, TARGET, ERROR,
START, END) represent for each specialty SP the tar-
get percentage TARGET of utilization and the maximum
distance allowed to the target value ERROR in the range
of days between START and END and models together
information described by the functions € and w;

e instances of sessionN (OR, N, D) represent the num-
ber of sessions N in which the operating room identified
by an id OR is split in the day D;

The output, is an assignment represented by atoms of the
form mss (OR, SID, SP, D), where the intuitive meaning
is that the operating room with id OR in the session with
id SID and in the day D is assigned the specialty SP and
corresponds to the tuples contained in the set .

Encoding. The related encoding is shown in Fig.2, and is
described next. To simplify the description, we denote as r;
the rule appearing at line i of Fig.2.

Auxiliary atoms in the heads of rules r{, rp and, r4 are
derived by the encoder to simplify the other rules. In partic-
ular, rule r; assigns the correct session ids to each operating
room for all the days considered. The assignment is made
assigning an id such that the number of ids assigned in each
active day is equal to the number of sessions in which the
operating room is split. Rule r, evaluates the total num-
ber of sessions available in the range of days between start
and end. This value is then used to evaluate the percentage
of assignment of each specialty. Rule r3 assigns one of the
possible specialties to a session of every operating room, sat-
isfying condition c;. Rule r4 derives an atom that represents
the assignment percentage of each specialty. In particular, it
counts the number of sessions linked to each specialty and
divides it by the total number of sessions that are available in
that period. Then, rule rs ensures that the percentage of each
specialty is bigger than 0, encoding condition c¢;. Rules r¢
and r7 check that the percentage of each specialty is compat-
ible with the target values and the allowed errors, encoding
condition c3. Finally, weak constraint rg minimizes the dif-
ference between the assigned and target percentage of each
specialty in each period of time.

Benchmarks and experiments. Here we report the results
of an empirical analysis of the MSS problem via ASP per-
formed on synthetic benchmarks, in which data have been
randomly generated using parameters inspired by literature
and real world data. The experiments were run on a AMD
Ryzen 5 2600 CPU @ 3.40GHz with 16 GB of physical
RAM. The ASP system used was CLINGO [24] 5.4.0, employ-
ing parameters --opt-strategy=usc for faster optimization
and --parallel-mode 6 for parallel execution. This setting
is the result of a preliminary analysis done also with other
parameters, i.e., the default configuration and the one having
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| session(SID,DAY,O0R)

:— operatingRoom(OR,_), sessionN(OR,N,DAY), SID=1..s_count, SID >=

((max_session*DAY)-(max_session-1)), SID<=((max_session*DAY)-(max_session-N)), not

inactive (OR,DAY).
> n_session(N,START,END)
END}, targetShare(_,_,_START,END).
5 {mss(OR,SID,SP,DAY)
4+ effectiveShare(SP,PERCENTAGE, START,END)

:— N = #count{SID,0OR,DAY :

: operatingRoom(OR, SP)} ==
:— SESSION = #count{ OR,SID,DAY :

session(SID,0R,DAY), DAY >= START, DAY <

:— session(SID,DAY,OR).
mss (OR,SID,SP,DAY), D

>= START, D < END}, n_session(N,START,END), specialty(SP), PERCENTAGE = ((SESSION*100) / N).
s :- effectiveShare(SP,PERCENTAGE,START,END), PERCENTAGE <= O.
¢ :- effectiveShare(SP,PERCENTAGE,START,END), targetShare(SP,TARGET,ERROR,START,END), PERCENTAGE

< (TARGET-ERROR) .

7 :— effectiveShare (SP,PERCENTAGE, START,END), targetShare(SP,TARGET,ERROR,START,END), PERCENTAGE

> (TARGET+ERROR) .

s :~ effectiveShare(SP,ES,START,END), targetShare(SP,TS,ERR,START,END).

Fig.2 ASP encoding of the MSS problem

--restart-on-model for optimization. The time limit was set
to 30s.

Data are based on the sizes and parameters of a typical
middle sized hospital, with 5 different specialties and 10
ORs. Each specialty is associated with a target value for each
month and an error, that is equal to 10 for all the special-
ties. Each specialty can be assigned to just some randomly
selected ORs and the target value is assigned by dividing the
number of ORs in which the specialty can be assigned to
the total number of ORs, and adding to the result a random
value in the range between -5 and 5. To test our solution
we considered four different scenarios. In the first scenario,
that we call Scenario A, we considered to have the constant
max_session equal to 2, while the constant d_count has
values from 30 to 180. Moreover, in this scenario the target
value for each specialty is equal for each month. For this sce-
nario, we considered 10 instances, each with different target
values for all the specialties, for each range of days consid-
ered. In particular, we tested the scalability of the scheduler
by considering an increasing number of days: 30, 60, 90,
120, 150 and, 180. Then, we generated a second scenario,
that we call Scenario B, that is based on the Scenario A con-
sidering 90 days. The difference with Scenario A is that for
each month the target value is increased or decreased by a
random value between -2 and 2, thus for each specialty there
are three different target values. Changes in the target values
could be done by the hospital manager because of different
availability of doctors or due to the increase of the surgeries
of some specialty. For the third and fourth scenario, named
Scenario C and D, respectively, we again considered a plan-
ning horizon fixed to 90 days. The constant max_session
is equal to 2 for the Scenario C, while for the Scenario D is
equal to 3. This means that, in the fourth scenario, one ran-
domly selected operating room is splitted in three sessions.
The difference between the Scenario C and the others is that,
for 5 days, three ORs are unavailable, meaning that no ses-
sion can be assigned to them during that days. The scenarios
C and D aim thus at evaluating what is the impact of limiting

[|ES-TS|@1,SP,START]

the usage of the ORs, or changing the number of sessions,
respectively.

For the basic scenario (Scenario A) it turned out that the
scheduler is able to optimally schedule the MSS in a mean
time of less than 10s even considering 180 days of plan-
ning horizon, which is a remarkable result. Moreover, besides
being able to reach an optimal solution in less than 10s on
average, the scheduler is able to always find the optimal solu-
tion in less than 30s. About Scenario B, we found that the
scheduler was able to reach the optimal solution on average
in 3, that is a time that is very close to the time required in
Scenario A. Thus, this analysis reveals that even changing the
target values in each month for all the specialties, our solu-
tion maintains very good performance. Results of Scenario
C is almost equal to the original one. So, even if three ORs
are unavailable for 5 days, the scheduler is able to compute
the optimal solution in the same time required by Scenario
A. Finally, in the Scenario D the scheduler obtained the opti-
mal solution almost in a similar time as in the Scenario A
for all but one instance: indeed, the third instance requires
4 s instead of 2 s to reach the optimal solution.

A more detailed account of the results for our MSS solu-
tion on random benchmarks can be found in Sect.5 of [23]
and in Sect. 6 of [29].

5 Rescheduling

In this section, we focus on the Rescheduling Master Surgi-
cal Schedule (RMSS) problem. We start by providing both
an informal and a formal description of the problem. Fol-
lowing that, we present an ASP encoding that relates to this
formulation.

5.1 RMSS problem description
In the context of Digital Health, effectively addressing

unforeseen challenges and adapting to changes is of vital
importance. In particular, when dealing with scheduling
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Table2 Example of RMSS

. Day  Session ORI OR2  OR3 OR4 OR5 OR6 OR7 OR8 ORY9 ORI0
generated by our solution. The
specialties in italic represent 1 1 SPS SPs SP3 SP3 SP2 SPS SP4 SP3 SPI  SP4
specialties that were not
previously assigned in that 2 SP5 SP5 SP3  SP3 SP2 SP5 SP4 SP3 SPI  SP4
session, OR, and day. The 2 3 SP5 SP5 SP5 SPS5 SP2 SP5 SP5 SP5 SP1 SP4
specialties in bold represent 4 SP5 SP5 SP3  SP3 SP2 SP5 SP4 SP3  SPI  SP4
specialties that were previously 5 SPS SPS SP3 SP3 SP2 SPS SP4 SP3 SPI  SP4
assigned in ORs that become
unavailable in those sessions 6 SP5 SP5 SP3 SP3 SP2 SP5 SP4 SP3 SPI  SP4
4 7 SP5 SP5 SP3 SP3 SP2 SP5 SP4 SP3 SPI  SP4
8 SP5 SP5 SP3 SP3 SP2 SP5 SP4 SP3 SPI  SP4
5 9 SP5 SP5 SP3 SP3 SP2 SP5 SP4 SP3 SPI  SP4
10 SP5 SP5 SP3 SP3 SP2 SP5 SP4 SP2 SPI  SP4
6 11 SP5 SP5 SP3 SP3 SP2 SP5 SP4 SP2 SPI  SP4
12 SP5 SP5 SP3 SP3 SP2 SP5 SP4 SP2 SPl  SP4
7 13 SP5 SP5 SP3 SP3 SP2 SP5 SP4 SP2 SPI  SP4
14 SP5 SP5 SP3 SP3 SP2 SP5 SP4 SP2 SPI  SP4

problems, this means that a previously valid solution may
become impossible to follow. Usually, the changes that inval-
idates a previously scheduled MSS are those that modify the
structure and organization of the hospital for a significant
period of time: e.g. the decision to open or close a wing of the
hospital, the decision to acquire or dismiss specialized equip-
ment for some OR, the increase or decrease of the expected
surgical procedures for a given specialty, long term damages
to an OR and so on. Consequently, implementing reschedul-
ing solutions becomes essential to provide solutions that can
react to these changes rapidly while maintaining the original
solution as much as possible.

In the context of the MSS problem we focus on following
three possible scenarios:

—_—

Some ORs are no longer available on some days;

2. Some specialty significantly changes the required target
value;

3. Some specialties can be assigned to a limited number of

days in a certain range.

Thus, the RMSS problem consists of starting from a pre-
viously valid solution (meaning all the associations between
specialties and operating rooms and sessions) and reassign-
ing these associations according to the new requirements that
emerged, while still respecting all the unchanged constraints.
As in the MSS problem, the optimization criteria of highest
importance are the ones that allow generating a scheduling
of high quality (i.e. reducing the changes of specialty for
the same OR on the same day). However, with lower impor-
tance, two additional optimization criteria are introduced for
the rescheduling problem:

@ Springer

(1) The first optimization aims to minimize the difference
in terms of the temporal distribution of the assignment
of all the specialties between the scheduling of the basic
problem and the rescheduling version, respectively;

(i1) The second optimization aims to minimize the changes
between a solution for the MSS and the RMSSproblems.

We point out that (i) is set as the second highest criteria for
rescheduling, because changing significantly the percentage
of time assigned to a specialty carries a heavy burden on the
organizational level, i.e. requiring more nurses and doctors
than expected. Whereas, (ii) requires that the solution for the
RMSSproblem should try to assign the specialty to the same
sessions and ORs when possible with respect to the starting
solution of the MSS.

To illustrate an example of the RMSS problem, let’s con-
sider as initial MSS the one provided in Table 1. We will
illustrate a solution to the rescheduling problem for Scenario
1. In this scenario, let’s assume that due to maintenance
works, OR1, OR2, and OR6 are unavailable on days 1, 2,
and 3, respectively. Consequently, there is a decrease in the
total assignment of specialty SP5. Initially, SP5 was assigned
to 30% of the total sessions, but with the unavailability, it
would now be assigned to 26% of the sessions. Moreover,
other specialties have seen an increase in their percentage of
assignments. Specialty SP3 was previously assigned to 25%
of the sessions while, due to the unavailability of the ORs, its
total assignments went up to 28%. A proper solution would
aim to increase the percentage of sessions to which SP5 is
assigned while maintaining similarity to the original MSS.
In Table 2 is presented a possible solution to this problem. As
shown in the table, to compensate for the unavailability, spe-
cialty SP5 has been assigned to 4 new sessions on the second
day. This adjustment brings the total percentage of sessions
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assigned to SP5 back to 30%, as required. Moreover, having
been replaced by SP5 in 3 sessions, SP3’s new total assign-
ment in the rescheduling solution returned to 25%.

5.2 RMSS mathematical formulation

As previously discussed, the rescheduling derives from
specific circumstances that make some input tuples unus-
able. Accordingly, to identify these tuples, we introduce the
unusable function of the form v : OR x D — {0, 1}, such
that v(y, d) = 1 if the operating room y is no longer avail-
able on day d, 0 otherwise. Consequently, in the rescheduling
problem, we replace the set R with the set R defined as:

R={(y,d,s) e ORxDxS|(y,d,s) € RAv(y,d) = 0).

Referring to the example presented in Table 2, and specifi-
cally focusing on day 1 and operating rooms 1 to 3, the set
R includes the tuples (OR2,1,1), (OR2,1,2), (OR3,1,1), and
(OR3,1,2). Moreover, from now on, we refer to the target
function and the deviation function as € and @, respectively,
highlighting that these functions may assume different values
with respect to the original scheduling.
We are now able to define a rescheduling.

Definition 5 (Rescheduling) A rescheduling & is a function
of the form & : R — SP that associates to each OR, day,
and session, a specialty.

Accordingly, the set T = {(y,d,s,x) € OR x D x S x
SP | x = o6(y,d,s) AN t(x,y) = 1} collects all the
tuples eligible for the rescheduling. Referring again to the
example presented in Table 2, and specifically focusing on
day 1 and operating rooms 1 to 3, the set £ includes the
tuples (OR2,1,1,SP5), (OR2,1,2,SP5), (OR3,1,1,SP3), and
(OR3,1,2,SP3).

Another scenario behind the rescheduling problem is the
limitation on the number of days within which a specialty x
can be assigned to an operating room. To tackle this scenario,
we introduce the limitation function of the form A : SP x
A — Ny such that

if x is limited

Ax,8)=neN
otherwise.

Ax,8) =0

Now we can formally define the rescheduling problem.

Definition 6 (RMSS problem) The Rescheduling Master
Surgical Schedules (RMSS) problem is defined as the prob-
lem of finding a set 1/~/ of tuples t = (x, y,d,s) € 3 that
satisfies conditions (cy), (¢p) and (c3) of Sect.2, evaluated
over 1,} €, @, and condition

(c4) Vx € SP,Vs§ € A if A(x,8) > 0 it holds that |x :
(x,y,d,s) ey Ad €8] < A(x, ).

The latter condition is required to ensure that for the special-
ties that are limited in the rescheduling problem, the bound
is satisfied.

We conclude this section by examining the two additional
optimization criteria introduced in Sect.5.1. To this end, we
introduce the following elements essential for analyzing a
solution.

Definition 7 Let v be a solution for the MSS problem and
Y a solution for the RMSSproblem. We define

M nyg= > 1¢0x8,9)—¢(x,8,9) ] and
xeSP,seA

@) ¢y j =1y, ds) €Y A y.d,s) € P

With (1) we assess the difference in terms of temporal dis-
tribution function between a solution v and ¢ for the MSS
and RMSSproblems, respectively; with (2), we evaluate the
changes between the original solution of the MSS problem
and the new one.

Finally, we define the notion of dominating solution for
the RMSSproblem.

Definition 8 Let ¢ represent a solution of the MSS problem
and ¥; and v, denote two solutions of the RMSSproblem.
We say that | dominates v, if

o t7 <t: ,orif
Y1 Y2 )
° tlﬁl = ti]/z = My gy < My OF if
° tlffl = f,/}z and Ny gy = My = Cyan = Sy

Definition 9 A solution 1 is optimal if it is not dominated
by any other rescheduling solution.

5.3 ASP encoding for the RMSS problem

We now present the encoding of the RMSSproblem.

Data model. The input data is specified by means of atoms
and constants outlined in Sect.4, supplemented by the fol-
lowing atoms:

e instances of unusable (OR, D) represent an operating
room OR that is unavailable on day D and model the func-
tion v;

e instances of limit (SP, START, END,N) represent
the limitation N concerning a specialty SP within the
timeframe from START to END and model the function
A

e instances of newTARGETshare, operating similarly to
the atom targetShare (introduced in Sect.4), repre-
sent the potential new values that the target function may
assume in the rescheduling and model the information
described by the functions € and @;
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| newsession(SID,DAY,0R)

:— operatingRoom(OR,_), sessionN(OR,N,DAY),SID = 1..s_count, SID >=

((max_session*DAY)-(max_session-1)), SID <= ((max_session*DAY)-(max_session-N)), not

inactive(OR,DAY), not unusable(OR,DAY).
> n_newsession(N,START,END)

:= N = #count{SID,0OR,DAY :

newsession(SID,DAY,0R), DAY>=START,

DAY<END}, newTARGETShare(_, _, _,START, END).

s rmss (OR,SID,SP,DAY)
4+ {rmss(0R, SID, SP, DAY)
s newEFFshare(SP, PERCENTAGE, START, END)

:- mss(OR,SID,SP,DAY), not unusable(OR,DAY), unusable(_,_).
: operatingRoom(OR, SP)} ==
:— SESSION = #count{ OR,SID,DAY :

:— newsession(SID, DAY, OR).
rmss (OR,SID,SP,DAY),

DAY>=START, DAY<END}, n_newsession(N, START, END), specialty(SP), PERCENTAGE =

((SESSION*100) / N).

¢ :— newEFFshare(SP, PERCENTAGE, _,_), PERCENTAGE = 0.
7 :— newEFFshare(SP, PERCENTAGE, START, END), newTARGETshare(SP,TARGET,ERROR,START,END),

PERCENTAGE < (TARGET-ERROR) .

s :— newEFFshare(SP, PERCENTAGE, START,END), newTARGETshare (SP,TARGET,ERROR,START,END),

PERCENTAGE > (TARGET+ERROR) .

9 :— #count{SP,O0R,DAY: rmss(OR,SID,SP,DAY), DAY>=START, DAY<=END} >= N, limit(SP,START,END,N).

10 :~ newEFFshare(SP, ES, START, END), newTARGETshare(SP,TS,ERR,START,END).
1 :~ effectiveShare(SP, ES, START, END), newEFFshare(SP, NES, START, END).

START]

Fig.3 ASP encoding of the RMSS problem

e instances of mss (OR, SID, SP, D) represent the
solution of the old planning, including the operating room
OR, session SID, specialty SP, and day D.

The output is the rescheduling, consisting of atoms of the
form rmss (OR, SID, SP, D), representing an operat-
ing room OR linked to a session SID for a specialty SP on a
day D and corresponds to the tuples contained in the set .

Encoding. The ASP encoding is shown in Fig. 3. To sim-
plify the description, we denote as r; the rule appearing at
line i of Fig.3. Essentially, the new encoding mirrors the
one for the scheduling, in addition to operating rooms no
longer available represented by the predicate unusable,
alongside the new criteria introduced to attain the optimal
solution. Therefore, rules rq, r2, and r5 behave, respectively,
as rules rq, rp, and ryq described in Sect.4. Rule r3 aims at
maintaining the same schedules for all the days that have not
an unusable operating room. Rule r4 assigns one of the possi-
ble specialties to a session of every operating room, satisfying
condition c¢;. Rules r¢ encodes condition c3, rules r7 and rg
encode condition c3 of the RMSS problem, whereas rule rg
models condition c4. Finally, the optimal solution is achieved
through the application of rules ryg, 11, and r12, prioritized
in decreasing order. Specifically, r1¢ focuses on minimizing
the difference between the temporal distribution and target
function of each specialty in each period of time. Following
that, with lower priority, rule 711 aims to minimize the dif-
ference in terms of temporal distribution function between
the old and the new solution. Lastly, rule ;> minimizes the
changes between the old and the new solution.
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> :~ mss(OR, SID, SP, DAY), not rmss(OR, SID, SP, DAY), not unusable(OR,DAY).

[IES-TS|@3, SP, START]
[|ES-NES|@2, SP,

[1e1,0R,SID]

6 Adaptation to and results on real data

In this section, we present the results obtained by using real
data and the modification done to use the MSS solution with
the new data. The section is split into two parts: in the first
one, we present the results obtained for the MSS problem, fol-
lowing two directions, i.e., trying to replicate the same MSS
used by the real hospital, and trying to increase the quality
of the MSS, that needs adaptations to the encoding. Produc-
ing an MSS that tries to assign the same specialty in all the
sessions of an OR in a day is crucial for reducing the costs of
a hospital since it allows for a reduction in the work needed
to prepare the ORs for different specialties. Moreover, keep-
ing the specialties to the same percentage of assignments,
if possible, eases the organization of the personnel turnover.
The second part, instead, presents the results of the RMSS
solution on the scenarios mentioned in Sect.5.1.

6.1 Results on MSS

Replicate the results with real data. After having tested our
solution in different scenarios with synthetic data in Sect.4,
we wanted to test it with real data. To accomplish this, we
used data from ASLI1 Liguria, Italy, already used in [34] in
the context of another scheduling problem. ASL1 is a local
health authority consisting of three hospitals: Bordighera,
Sanremo, and Imperia. Each hospital has between 2 and 5
ORs and the number of patients visited in a typical month
ranges between 100 patients of Bordighera to 500 patients of
Imperia. We have made the decision to proceed with the test
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1 specialty("IMPERIA CARDIOLOGIA").
operatingRoom("SALA D","IMPERIA
CARDIOLOGIA").
3 operatingRoom("SALA EP","IMPERIA
CARDIOLOGIA").
+ specialty("IMPERIA CHIRURGIA GENERALE").
s operatingRoom("SALA A" ,"IMPERIA CHIRURGIA

)

GENERALE") .

¢ operatingRoom("SALA B","IMPERIA CHIRURGIA
GENERALE") .

7 operatingRoom("SALA C","IMPERIA CHIRURGIA
GENERALE") .

s operatingRoom("SALA D" ,"IMPERIA CHIRURGIA
GENERALE") .

o operatingRoom("SALA E","IMPERIA CHIRURGIA
GENERALE") .

10 specialty("IMPERIA CHIRURGIA GENERALE DH
SURGERY") .

11 operatingRoom("SALA A","IMPERIA CHIRURGIA
GENERALE DH SURGERY") .

12

Fig.4 Example of input derived from the data for Imperia hospital

using data from the hospital of Imperia since it is the hospital
with more ORs, specialties, and patients. In particular, the
considered data from the hospital of Imperia consists of the
list of surgeries of the patients for the months of March, April,
and May, 2019. The Imperia hospital makes use of 9 different
ORs and there are 8 different specialties.

In this case, we wanted to assign the ORs to the differ-
ent specialties of the hospital with the same percentages of
assignments. In order to complete these tests, we derived the
number of ORs, number of specialties, possible assignments
of specialties to ORs, and percentage of assignments of each
specialty from the real data. Then, we used this information
as input, of which an excerpt obtained from the Imperia hos-
pital can be seen in Fig. 4. We tested the solution considering
90 days in a different, real setting where, differently from
the synthetic data, e.g., the number of ORs is larger than
the number of specialties. The solution was able to find an
optimal solution in less than a second. This means that the
solution managed to assign the different ORs as requested by
the hospital very rapidly and, moreover, the error was equal
to O percentage points. This allows us to confirm the good-
ness of our solution, that is able to replicate what happened
in the hospital.

Additions to consider real data. In the following, we
present an addition to the already presented solution that we
did to increase the quality of the MSS produced by the hospi-
tal and that allows us to derive the percentage of assignments
to assign to each specialty. Indeed, in the rest of the work,
we consider the target of assignment of the specialties as an
input. Here, we want to consider the case in which a hospital
wants to derive the assignments considering the number of
expected patients and caring about the quality of the MSS. To

produce a better MSS, we want to obtain an MSS in which the
ORs are assigned, as much as possible, to the same specialty
for all the sessions in a day, every week the specialties are
assigned to the same day, and the percentage of time assigned
to each specialty every month does not change. Indeed, ana-
lyzing the real data, we found that many ORs were assigned
to different specialties on consecutive days and, even if not
needed, looking at the number of patients, the percentage of
time assigned to the different specialties varies a lot during
the months.

Starting from the ASL1 data, we derived the number of
patients assigned each month for every specialty, considering
it as a prediction of future needs, and used this information
as a new input for a modified version of the encoder in Fig. 2.

Datamodel. The input data is the same as the one presented
in Sect. 4 but for the atom targetShare (SP, TARGET,
ERROR, START, END) that is not used and is replaced
by an atom needed (SP, EXPECTED, START, END)
that represents for each specialty SP the expected percent-
age (EXPECTED) of utilization needed for patients of that
specialty in the range of days between START and END. The
output is the same as in Sect.4.

Encoding. The related encoding is the same as presented
in Fig. 2 but without the rules appearing in lines 5, 6, and, 7
and the weak constraint in line 8, plus the rules in Fig.5. In
the following, we describe such additional rules.

In particular, rule r9 ensures that the percentage of ses-
sions assigned to each specialty is more than the expected
percentage. Rule rq is used to derive the difference between
the percentage of sessions assigned to a specialty and the
expected percentage for the specialty in which the differ-
ence is bigger than a value equal to 10. Weak constraint r
minimizes the assignments of two different specialties to the
same OR and on the same day in different sessions. Weak
constraint r1» minimizes the assignments of two different
specialties to the same OR in a one-week time gap. Weak
constraint 713 minimizes the difference in the percentage of
sessions assigned to each specialty each month. Finally, weak
constraint r14 minimizes the value obtained with rule ryg,
thus, it reduces the unnecessary assignments.

Testing the solution with the new encoding with the data
of the Imperia hospital, we obtained an optimal solution in
5.8s. Thus, the solution is able to obtain a MSS in which for
every day, each OR has just one specialty assigned, and every
week the specialties are assigned to the same day. Moreover,
the difference in the percentage of sessions assigned to each
specialty every month is 0, while keeping the value higher
than the expected need.

Upon testing the new solution with real data, we can affirm
its viability as a valid option for generating a MSS, especially
when the hospital prioritizes enhancing the overall quality of
the MSSS over achieving specific assignments for each spe-
cialty.
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9 :— effectiveShare(SP, PERCENTAGE, START, END), needed(SP,TARGET,START,END), PERCENTAGE < TARGET.

10 slack(SP, PERCENTAGE-TARGET, START)

effectiveShare(SP, P1, START,
slack(SP, SL, ST). [SLeil, SL, ST]

Fig.5 Added rules to the MSS encoding to deal with real data

Table 3 Sum of the differences between the new target values and
the assigned temporal distribution values of every specialty (Target),
expressed in percentage points, and the difference, expressed in per-
centage, between the original MSS and the new solution (Change) in
the rescheduled instances in the three scenarios

Instance  SCENARIO 1 SCENARIO 2 SCENARIO 3
Target Change Target Change Target Change
1 2 1% 0 4% 0 1%
2 2 1% 0 1% 0 1%
3 3 1% 1 4% 0 1%
4 3 1% 2 9% 0 1%
5 3 3% 3 7% 0 1%
6 3 2% 2 10% 0 1%
7 3 6% 6 14% 0 1%
8 3 6% 4 11% 0 1%

6.2 Results on RMSS

Benchmarks. As for the MSS problem, the ASP system
used was CLINGO [24], ver. 5.4.0, using --parallel-mode 6 for
parallel execution. The time limit was set to 10s.

The rescheduling problem starts from the result of a
scheduling problem with some additional information. Thus,
we started from the results obtained using the encoding pre-
sented in Fig.2 and the real data of the Imperia hospital
presented in the previous subsection. Depending on the sce-
nario, we added the unavailability of an OR for some days,
new target values for the specialty, or a limited number of
days that some specialty can be assigned to, as presented
in Sect.5.1. To test the scalability of our solution, for each
scenario, we tested different settings requiring more changes
to the original solution. We tested 8 instances for each sce-
nario, increasing the unavailability according to the scenario.
In particular, in each instance, we changed the unavailability
of the ORs, the difference of the required target value, and
the limit of usage of the different specialties, respectively. In
particular, in Scenario 1, in every instance, there are two more
unusable ORs. In Scenario 2, for each instance, a modified
target value for a specialty is added, and finally, in Scenario
3, every instance increases the limit of usage of a specialty
or adds a limit to another specialty.

Results. We present the results obtained from testing
our solution to the RMSS problem, analyzing each scenario
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:— effectiveShare(SP, PERCENTAGE, START, _), needed(SP,
TARGET, START, _), PERCENTAGE > TARGET + 10.

mss(OR, SID1, SP1, DAY), mss(OR, SID2, SP2, DAY), SID2 > SID1, SP1 != SP2.
mss(OR, _, SP, DAY),not mss(OR, _, SP, DAY+7), session( _, DAY+7, OR).
_), effectiveShare(SP, P2, START+30, _).

[1@4, DAY, OR]
[1@3, OR, DAY]
[IP1-P2]|@2,SP, START]

defined in Sect. 5.1 individually. A summary of these results
is provided in Table 3, where each row denotes an instance
and each column represents a distinct scenario. Moreover,
within each column, the analysis is further subdivided into
two subcolumns: Target, denoting the total sum of the dif-
ferences, in terms of percentage points, between the new
target value and the assigned temporal distribution value,
evaluated for each specialty, and Change, expressing the dif-
ference in percentage between the original scheduling and
the rescheduling.

First scenario: some ORs are no longer available. In this
scenario, we consider that an OR can no longer be assigned
on some days as originally scheduled. This affects the entire
schedule due to the impact on the total time assigned to the
different specialties.

In all the instances tested, as can be seen in Table 3, the
total sum of the differences between the target values and the
temporal distribution values is at most 3 percentage points,
meaning that the solution is able to reschedule the specialties
following the initial target values for all but three specialties,
missing the correct target value by just 1 percentage point.
We point out that, in instances with at most 10% of days with
unusable ORs, i.e., instance 1 to 4, the solution of the ASP
encoding of the RMSS problem differs from the solution of
the MSS problem only of 1%; whereas, increasing the per-
centage of unusable days and ORs up to 20%, the difference
between the solutions is just the 6%. This means that, even
when the setting of the ORs changes and the target values are
still to be matched, the rescheduling solution is able to recre-
ate a new schedule by changing just the minimum necessary
number of sessions.

Second scenario: changes in target values. Here we simu-
late a scenario where, due to changes in future needs, one or
more specialties adjust their target values. This adjustment
necessitates increasing or decreasing the number of sessions
allocated to those specialties accordingly. Due to this change,
it derives that to reach the new target values, the difference
between the solution of the MSS and RMSS problems will be
larger when compared to the first scenario. Indeed, allocat-
ing more/fewer sessions to the specialties will require some
significant changes to the original solution.

In the first 6 instances tested, we can see that the total
difference between the target values and the temporal distri-
bution value is at most 3 percentage points. This means that
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the solution is able to reschedule the specialties according to
the new target values assigned in this scenario, keeping, in
all of these instances, more than 90% of the original MSS
solution unchanged; in the last two instances, instead, the
quality of the solution, meaning the difference between the
target value and the temporal distribution, and the difference
between the solution of the MSS and RMSS, is affected by
the increasing difference between the original and the new
target value. Indeed, in this case, the difference is 6 and 4 per-
centage points, respectively. However, taking into accounts
the increasing difference between the original target values
and the new ones, it should be noted that the RMSS solutions
are able to maintain the same solution for more than 85% of
the considered sessions.

Third scenario: limit on the usage of specialties. In this
third scenario, we examine a situation where some specialties
have a constraint on the total number of days they can be
allocated. The best solution changes only the assignments
regarding the limited specialties, maintaining unchanged the
other two parameters of optimizations.

Despite that the solver is not able to prove the optimality
in 10s, the results show that the ASP encoding computes an
optimal solution over all the instances. Indeed, as reported
in Table 3, the solutions obtained with all the instances fol-
low the required target values, and the difference between the
MSS and the RMSS solutions regards only the limited spe-
cialties, that have to be rescheduled, keeping the remaining
assignment unchanged.

6.3 Comparison to alternative logic-based
formalisms

In the following, we present an empirical comparison of
the original solution presented in Sect. 5 on different alterna-
tive logic-based formalisms, obtained by applying automatic
translations of ASP instances. With this analysis, we want
to compare ASP performance to that of other, possibly
commercial, solutions. In more detail, we used the ASP
solver WASP [2], with the option —pre=wbo, which con-
verts ground ASP instances into pseudo-Boolean instances
in the wbo format [30]. Then, we used the tool PYPBLIB [5]
to encode wbo instances as MaxSAT instances. Moreover,
in order to provide a fair comparison, given that other
approaches can not deal with multi level optimization, we
also processed our ASP instances using WASP with the option
-pre=1parse, which collapses all weak constraint levels
into one single level using exponential weights. In this way,
the costs found by the different approaches can be compared.

For the comparison, we considered two state-of-the-art
MaxSAT solvers, namely MAXHS [33] and OPEN- WBO [28],
and the industrial ILP tool for solving optimization prob-
lems GUROBI [26], which is able to process instances in wbo
format. Concerning ASP, we used CLINGO with the option

Table 4 Comparison of the rescheduling ASP solution using CLINGO
with the option restart-on-model (CLINGO- ROM in the table) and
the alternative logic-based solutions GUROBI, on wbo instances, MAXHS
and OPEN- WBO. The value in each cell represents if the solver was able
to find the optimal solution in less than 10s (OPT), a percentage value
representing the gap to the optimal solution, or a dash in case the solver
was not able to find any solution before the timeout

Instance CLINGO- ROM GUROBI MAXHS OPEN- WBO
1 0.05% OPT - 60%

2 OPT OPT OPT OPT

3 OPT OPT - OPT

4 OPT OPT - 53%

5 0.03% OPT - 215%

6 0.02% OPT - 468%

7 0.03% OPT - 167%

8 0.04% OPT - 167%

restart-on-model, that was the solver and the option
used in Sect. 6.2, but now run on ground instances.

The experiment was executed on the 8 instances of Sce-
nario 1 presented in Sect. 6. Results are reported in Table 4,
where for each solver and instance we report the required
time, in seconds, to reach an optimal solution or, if an opti-
mal solution is not found within the limit, the percentage
gap between the sub-optimal solution found and the opti-
mal one, computed as the ratio between the difference of the
sub-optimal and optimal solutions, and the optimal one (as
a concrete example, consider Instance 6 for OPEN- WBO in
Table 4: the sub-optimal solution computed by the solver is
193069 while the optimal solution is 33960, thus the percent-
age gap is W. The results obtained show that using
GUROBI is possible to obtain the optimal solution in all the
instances before the timeout. Concerning CLINGO- ROM, it is
possible to see that, while the optimal solution is reached in
4 instances, in all the other instances the obtained result is
very close to the optimal solution. Indeed, in all the remain-
ing instances, the gap of the solution found using ASP to the
optimal one is at most 0.05%. Concerning OPEN- WBO, we
can see that while it is able to find the optimal solution in
two instances, when it does not find the optimal solution, the
found solution is of low quality. This is due to the solving
algorithm it employes. Finally, MAXHS can solve just one
instance, optimally, but it is not able to find any solution to
the other instances. To sum up, it is possible to state that
GUROBI and CLINGO- ROM are the two solvers that perform
better in this comparison: GUROBI always finds the optimal
solution, while CLINGO- ROM computes either the optimal
solution or a solution that has a small gap to it.

@ Springer
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7 Related work

The section is organized in two subsections: the first presents
works that highlight the importance of solving the (R)MSS
problem, and alternative methods for solving such problems,
with a focus on the works using real data. The second subsec-
tion, instead, mentions works in which ASP has been already
successfully employed to closely related scheduling prob-
lems, with focus on works in which rescheduling solutions
have been devised.

7.1 Solving the MSS problem

In [22] is presented a literature review on how different
Operations Research techniques can be applied to surgical
planning. Presenting the different approaches to the MSS
problem, the authors pointed out that a more efficient MSS
can improve the usage of the different resources involved
(such as wards, that we do not take into account). Some
works were able to use real data to test their solutions; among
them, [37] shows the benefit of implementing an effective
MSS in a regional hospital in the Netherlands. In particular,
thanks to the suggestion of the solution proposed, the hospital
was able to reduce the budget while increasing the number
of patients operated. In this work, the MSS is evaluated as
a cyclic schedule composed of different individual surgical
case types. Thus, the MSS is composed by a sequence of
surgeries instead of blocks of specialties. Moreover, the MSS
is planned for 3 weeks only. In [36], the authors proposed
a solution to the MSS problem and the surgical case assign-
ments problem formulating it using a mixed integer nonlinear
programming approach. They compared their solutions to the
historical data of an Australian public hospital. Differently
from our work, the solution proposed by the authors maxi-
mizes the number of patients operated instead of focusing on
target values required by the hospital. [27] used a mixed inte-
ger linear programming model to address the problem. They
used the required surgeries of the week to assign the ORs to
the different specialties and considered a fixed (two) number
of sessions for each day. The tests done in this work are con-
ducted on real data provided by a medium-sized Portuguese
private hospital. In [38], the authors addressed the MSS
problem by proposing a cyclic schedule for the frequently
performed surgical procedures, maximizing the operating
room utilization. In this work, the solution was tested with
data from the Erasmus Medical Center in Rotterdam, The
Netherlands.

The work in [6] used a simulation-optimization approach
to solve the MSS problem. In particular, they used a two-stage
stochastic optimization model and a discrete-event simula-
tion model to handle uncertainty such as the surgery duration.
They tested the solution with generated synthetic data; fur-

@ Springer

ther, they did not consider a target value for the different
specialties.

All such works focused on the scheduling problem, while
they did not consider rescheduling.

7.2 Solving scheduling problems in healthcare with
ASP

ASP has been successfully used for solving hard combinato-
rial and application scheduling problems in several research
areas. In the healthcare domain, the first solved problem was
the Nurse Scheduling Problem [3, 17], where the goal is
to create a scheduling for nurses working in hospital units.
Then, the problem of assigning ORs to patients, denoted as
Operating Room Scheduling, has been treated [15], and fur-
ther extended to include bed management [14]. More recent
problems include the Chemotherepy Treatment Scheduling
problem [13], in which patients are assigned a chair or a bed
for their treatments, and the Rehabilitation Scheduling Prob-
lem [11], which assigns patients to operators in rehabilitation
sessions. In both recent works, real data were used to test the
solutions. Moreover, for all the works mentioned up to now,
also rescheduling solutions have been defined, implemented
and tested [4, 13, 16].

In [12] and [10], it is proposed a solution to a problem of
scheduling chronic outpatients’ clinical pathways, which is
split into two phases. In the former, the problem consists to
assign a date to the patients in the first phase and the time
for the exams in the second phase. In the latter, the problem
consists of assigning a date to a visit or a therapy for multiple
recurrent exams to chronic patients. The problem is split into
two sub-problems to increase the performance of the solution
using Benders’ decomposition method.

8 Conclusion

In this paper, we have presented an analysis of the MSS and
RMSS problems, as defined in the paper, modeled and solved
with ASP. For both problems, we started from an informal
description of the problem, then formulated in precise math-
ematical terms, and finally presented our ASP solutions. We
focused our analysis on real data from ASLI1 Liguria in Italy,
and considered a number of tasks: for the MSS problem we
also needed to adapt the encoding to the real data on a task.
Results demonstrate the overall efficacy of our solution for
both scheduling and rescheduling also when tested on real
data, also when compared to other logic-based formalisms.
For what concerns future works, it would be interesting to
analyze other scenarios in which some of our constraints are
relaxed, e.g., in which an OR can be shared among special-
ties, and/or added, e.g., in which some ORs are reserved to
emergency situations.



Progress in Artificial Intelligence

Encodings and benchmarks employed in this paper can
be found at: https://github.com/MarcoMochi/PAI-HC2023-
mss.
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